Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1
نویسندگان
چکیده
The dynamic nature of cancer stem cells that underlie metastasis or their ability to switch between different cellular identities, as in EMT and MET, has profound implications for cancer therapy. The functional relationship between molecules involved in cancer cell stemness and metastasis is not clear. In this regard, our studies on hGBM tissue grade IV specimens showed significant expression of Twist1 and Sox2, known mesenchymal and stemness related markers, respectively, indicating their association with glial tumor genesis and metastasis. The glioma stem cells obtained from CD133+ cells demonstrated increased expression of Twist1 and Sox2 accompanied by significant increase in the mesenchymal markers such as N-cadherin, vimentin and β-catenin. Our studies on glioma stem cells treatment with human umbilical cord blood derived- mesenchymal stem cells, showed down regulation of Twist1 and Sox2 proteins, apart from other mesenchymal stem cell markers. Based on the in vitro experiments and in vivo intracranial xenograft mouse model studies, we elucidated the potential therapeutic role of hUCBSC in suppressing glioma cancer stemness by the induction of MET.
منابع مشابه
EMT related lncrnas’ as novel biomarkers in glioblastoma: a review article
Glioma is the most common type of brain tumor and according to the 2016 WHO classification, based on invasion level, it is divided into four categories. The most severe and invasive type is grade IV glioma or glioblastoma (GBM), which has a very poor prognosis and a survival rate of only 15 months. However, the molecular pathway of invasion in malignant glioma tumors has not yet been clearly el...
متن کاملRapamycin Inhibits Expansion of Cord Blood Derived NK and T Cell
Background: The mammalian target of rapamycin (mTOR) is important in hematopoiesis. Despite the central role of mTOR in regulating the differentiation of immune cells, the effect of mTOR function on cord blood mononuclear cells is yet to be defined. Objectives: To evaluate the effect of mTOR inhibition, using rapamycin on the proliferation and apoptosis of cord blood mononuclear cells, as well ...
متن کاملStudy of telomerase activity, proliferation and differentiation characteristics in umbilical cord blood mesenchymal stem cells
In recent years, considerable advances have been made in the field of regenerative medicine. Unlikeembryonic stem cells, which pose the problems of ethical concerns and cause severe immunological reactions as well as neoplasma formation after transplantation, umbilical cord blood is a primitive source ofmesenchymal stem cells that covers the benefits of both embryonic and adult stem cells. It h...
متن کاملOnm-21: General Principles of Collecting and Storing Cord Blood Stem Cell
Cord blood is the blood that remains in the umbilical cord and placenta following birth, which is usually discarded It contains red blood cells, white blood cells, platelets, and plasma, like blood. In addition, cord blood is a rich source of stem cells that may have potentially lifesaving benefits for your baby and family. The cord blood of baby serves as an abundant source of stem cells. Thes...
متن کاملOnm-19: The Role of Cord Blood Preservationin Cell Therapy
s:3604:"During pregnancy, the placenta delivers "cord blood" to the baby through the umbilical cord serving as a lifeline of nourishment from the mother to baby. At birth, "cord blood" remains in the umbilical cord and placenta and until recently, had typically been discarded. The tragedy of this practice is that "cord blood" contains very special cells called "stem cells". Recent advances in m...
متن کامل